Reg. No.

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., PHYSICS

SEM	CATEGORY		COMPONENT COURSE CODE		COURSE TITLE			
v	PART - III		CORE	U21PH508	FUNDAMENTAL	S OF ELECTRONICS		
Date &	s Sessio	n: 05.1	1.2024/FN Time: 3 hours Maximum: 75 M			aximum: 75 Marks		
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.					
CO1	K1	1.	Give an example f a) alternator	or current source. b) generator	c) battery	d) photovoltaic cell		
CO1	K2	2.	represe port network. a) o-parameter	ents the relationship b) n-parameter) between voltage a c) h-parameter	nd current in a two- d) m-parameter		
CO2	K1	3.	A crystal diode is a) oscillator	used as a/an b) amplifier	 c) filter	d) rectifier		
CO2	K2	4.	A allow a) capacitor	rs ac and blocks dc. b) inductor	c) transistor	d) transformer		
CO3	K1	5.	The built- in- pote a) 0.7 V	ential of a silicon dio b) 0.3 V	ode at room temper c) 1 V	ature is d) 10 V		
CO3	K2	6.	The electric power a) i/R	is given by, P = b) i ² R	 c) R/i	d) R ² i		
CO4	K1	7.	The operation of a a) register	bistable multivibra b) flip-flop	tor is identical to t c) converter	hat of a d) counter		
CO4	K2	8.	RC phase shift network. a) three	oscillators contain b) two	a minimum of c) one	phase shift d) zero		
CO5	K1	9.	The am a) log	plifier amplifies the b) antilog	difference between c) differential	n two input signals. d) buffer		
CO5	K2	10.	The maximum rat region is known a a) closed loop gair	te at which the out s of the op-a n b) open loop gain	put voltage can ch amp. c) slew rate	hange within its linear d) CMRR		
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – B (</u> 5 X 5 = 25 Marks) Answer <u>ALL</u> Questions choosing either (a) or (b)					
CO1	K3	11a.	Explain the maxim	num power transfer	theorem.			
CO1	K3	11b.	Develop the proce	dure for finding Nor	ton equivalent circ	euit.		
CO2	K3	12a.	Describe an exper	iment to draw the V	T characteristics of	f a zener diode.		
CO2	K3	12b.	Find an expression	n for efficiency of a l	half wave rectifier.			

CO3	K4	13a.	Analyze the action of transistor with neat circuit diagram.	
			(OR)	
CO3	K4	13b.	Examine the function of Class B power amplifier.	
CO4	K4	14a.	Explain Barkhausen conditions for an oscillation.	
			(OR)	
CO4	K4	14b.	Assess the clipping circuits with necessary input and output waveforms.	
CO5	K5	15a.	Infer the application of op-amp as an integrator with its input and output	
			waveforms.	
			(OR)	
CO5	K5	15b.	Elaborate in detail about the high pass filter with neat diagram.	

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – C (</u> 5 X 8 = 40 Marks) Answer <u>ALL Q</u> uestions choosing either (a) or (b)
CO1	K3	16a.	Briefly explain the conversion of voltage source into current source. (OR)
CO1	K3	16b.	Illuminate Thevenin's theorem with an example.
CO2	K4	17a.	Derive an expression for the efficiency of a bridge rectifier with neat sketch. (OR)
CO2	K4	17b.	Infer the operation of capacitor and choke input filter.
CO3	K4	18a.	Analyze the characteristics of JFET in detail. (OR)
CO3	K4	18b.	Examine the function of RC coupled amplifier with neat diagram.
CO4	K5	19a.	Predict the function of Hartley oscillator and obtain its frequency. (OR)
CO4	K5	19b.	Assess the operation of an a stable multivibrator with neat diagram.
CO5	K5	20a.	Draw an op-amp circuit whose output is $V_0 = -(V_1+V_2+V_3)$. (OR)
CO5	K5	20b.	 (a) Derive an expression for the voltage gain of non-inverting amplifier with neat diagram. (b) In a non-inverting amplifier, let R₁ = 5kΩ, R_f = 20kΩ and V_i = 1V. A load resistor of 5kΩ is connected at the output. Calculate the output voltage.